Land Use and Land Cover Classification Using Radarsat-2 Polarimetric Sar Image

نویسندگان

  • Z. Qi
  • A. G. Yeh
  • X. Li
  • Z. Lin
چکیده

Traditional pixel-based classification methods yield poor results when applied to synthetic aperture radar (SAR) imagery because of the presence of the speckle and limited spectral information in SAR data. A novel classification method, integrating polarimetric target decomposition, object-oriented image analysis, and decision tree algorithms, is proposed for land use and land cover (LULC) classification using RADARSAT-2 polarimetric SAR (PolSAR) data. The new method makes use of polarimetric information of PolSAR data, and takes advantage of object-oriented analysis and decision tree algorithms. The polarimetric target decomposition is aimed at extracting physical information from the observed scattering of microwaves by surface and volume for the classification of scattering data. The main purposes of the object-oriented image analysis are delineating objects and extracting various features, such as tone, shape, texture, area, and context. Decision tree algorithms provide an effective way to select features and create a decision tree for classification. The comparison between the proposed method and the Wishart supervised classification was made to test the performance of the proposed method. The overall accuracies of this proposed method and the Wishart supervised classification were 89.34% and 79.36%, respectively. The results show that the proposed method outperforms the Wishart supervised classification, and is an appropriate method for LULC classification of RADARSAT-2 PolSAR data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multitemporal Radarsat-2 Polarimetric Sar Data for Urban Land-cover Mapping

The objective of this research is to evaluate multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using a novel classification scheme. Six-date RADARSAT-2 Polarimetric SAR data in both ascending and descending orbits were acquired during June to September 2008 in the rural-urban fringe of the Greater Toronto Area. The major land-cover types are builtup areas, roa...

متن کامل

RADARSAT-2 Polarimetric SAR Data for Urban Land Cover Classification: A Multitemporal Dual-Orbit Approach

This research investigates multitemporal dual-orbit RADARSAT-2 polarimetric SAR data for urban land cover classification using an object-based support vector machine (SVM). Sixdate RADARSAT-2 high-resolution SAR data in both ascending and descending orbits were acquired in the rural-urban fringe of the Greater Toronto Area during the summer of 2008. The major landuse/land-cover classes include ...

متن کامل

Multitemporal RADARSAT-2 Polarimetric SAR Data for Urban Land Cover Classification Using Support Vector Machine

This research investigates the various RADARSAT-2 polarimetric SAR features for urban land cover classification using object-based method combining with support vector machine (SVM) and ruled-based approach. Six-dates of RADARSAT-2 fine-beam polarimetric SAR data were acquired in the rural-urban fringe of Greater Toronto Area during June to September, 2008. The major landuse/land-cover classes ...

متن کامل

Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm

Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...

متن کامل

Land Cover Classification in SubArctic Regions Using Fully Polarimetric RADARSAT-2 Data

The expansion of shrub vegetation in Arctic and sub-Arctic environments observed in the past decades can have significant effects on northern ecosystems. There is a need for efficient tools to monitor those changes, not only in terms of the spatial coverage of shrubs, but also their vertical growth. The objective of the current paper is to evaluate the performance of polarimetric C-band SAR dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010